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FORENORD

This report is divided into two completely separate and distinct parts.
In Part I, Physical Optics Inverse Scattering, a physical optics approximation
to the monostatic electromagnetic inverse scattering problem is developed for
stationary perfectly conducting scatterers. In Part II, Exact Inverse
Scattering, a rigorous and exact solution to the general inverse problem is
developed, which is applicable to the monostatic-bistatic electromagnetic
inverse scattering problem for moving scatterers of arbitrary conductivity.
This division into two distinct parts is necessitated by the totally
different approaches taken to the problem; although the results of Part I
are reaffirmed by the incidental first-order approximations developed in
Part II.
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ABSTRACT |

PART I: A three-dimensional electromagnetic Inverse Scattering Identity,
based on the Physical Optics approximation, is develcped for the monostatic
scattered far field cross section of perfect conductors. Uniqueness of this
inverse scattering identity is proven. This identity requires complete
scattering information for all frequencies and aspect angles. A non-singular
integral equation is developed for the arbitrary case of incomplete frequency
and/or aspect angle scattering information. A general closed form solution
to this integral equation is developed, which yields the shape of a scatterer

.. from such incomplete information. A specific practical radar solution is
presented. The resolution of this solution is developed; yielding short-
pulse target resolution radar system parameter equations. Results of the
three-dimensional numerical reconstruction of a sphere and a cylinder from a
variety of aspect angle and frequency band limited cross section data are
presented. The merits of this solution over the conventional synthetic
aperture radar imaging technique are discussed.
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PART II: The general inverse scattering and radiation pxoblem

associated with the three-dimensional inhomogeneous scalar field Helmholtz
wave equation is formulated as a Fredholm integro-differential equation of
the second kind. The far-field inverse integro-differential equation is
solved in closed form with the aid of a single resolvent integral operator, )
which can be readily evaluated numerically with the aid of the fast Fourier
transform algorithm. The inverse integro-differential equation and its
3 solution are then generalized to the reduced vector wave equation resulting
'i from Maxwell's equations. A formal statement of the inverse problem is

: presented. It is shown that the first order Neumann series solution of the
inverse integro-differential equation as well as the first cxrder term of
its exact solution represent the physical optics approximation and the
equations governing synthetic microwave holography. The (analogous) four-
dimensional inverse integro-differential equation and its closed form
solution, applicable to Doppler-contaminated fields radiated by moving
scatterers, is developed.
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- SECTION I

INTRODUCTION

The Direct Scattering problem, whether electromagnetic, acoustic,
particle, or quantum mechanical, is defined as the problem of predicting
the scattered quantities, given the incident quantities, the relevant
description of the scatterer, and the appropriate laws governing the inter-
action. The back-scattering and forward-scattering problems are the special
monostatic case and the special bistatic case of scattering in the direction

of incidence respectively.

The Inverse Scattering problem is defined as the problem of determining
the relevant quantities describing the scatterer, given the incident and
scattered quantities, and the appropriate laws governing the interaction.

The Uniqueness and Well-behavedness problems must also be taken as an integral
part of the inverse scattering problem. The Well-behavedness problem is the
problem of determining the degree of smoothness and continuity with which the
so-cailed output data varies with respect to the so-called input data. The
uniqueness problem must also deal with the question of incomplete input data.

The Electromagnetic Inverse Scattering problem is thus defined as the
problem of determining the size, shape and electromagnetic properties
distributions (conductivity, susceptibility, and permeability distributions)
of a scatterer, given the incident and scattered electromagnetic fields, and
the electromagnetic field equations (Maxwell's equations and the appropriate
wave equations; the constitutive equations and their coefficients are taken
as part of the electromagnetic properties of the scatterer); and the determi-
nation of whether this problem is uniquely solvable for incomplete input
data, i.e., the various permutations of incomplete bistatic aspect angles,

incomplete monostatic aspect angles, incomplete frequency, monochromatic data

s
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only, incomplete polarization matrix, amplitude (power cross-section) data
only, and scattered far field data only. Also of interest is the inverse
scattering problem for which some a priori information about the scatterer
exists; e.g., that the conductivity of the scatterer is infinite (perfect
scatterer), that the geometry of the scatterer is of axial symmetry, etc.

For a physically more sophisticated and mathematically more rigorous
definition of the general inverse problem (including the inverse radiation
problem), the reader is referred to part II, sections IX and X.5 of this

report.

The subject matter of this part I is restricted to the monostatic far
field special case; a restriction being characteristically inherent to the
radar application. For mathematical reasons that will become evident to the
reader, the further special case of a priori knowledge of the scatterer being
a perfect conductor is treated. For both of these cases, special attention
is given to the further special case of the finite three-dimensional aperture;
i.e., the case for which monostatic scattering data is available for a
limited and incomplete frequency and aspect angle domain. From a practical
short pulse target resolution radar point of view, this special case is of

fundamental and primary interest.

The approach taken and the results obtained can be summarized as
follows. In Secticn II, the physical optics approximation is taken as the
basis for the direct scattering theory, and its validity for, and consistency
with, short pulse target resolution radar concepts is discussed briefly.

In Section III, with the aid of this approximation, a basic Inverse Scattering
Identity is then developed, that states that the characteristic function (in
three-dimensional space) of a scatterer is related to the field cross-section
(in three-dimensional k-space) by a three-dimensional Fourier Transform.
Uniqueness of the solution for finite sized scatterers is established. 1In
Section IV, a general, non-singular, inverse scattering integral equation is
developed, solutions to which permit the determination of an appropriate
maximum of information about a scatterer from incomplete scattering data.

The use of the Physical Optics approximation is further justified. In Section
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V, a closed form solution to this integral equation, valid for any arbitrarily

shaped finite k-space aperture (of incomplete frequency and aspect angles

scattering data), is developed. The full details of a practical frequency and

aspect angles band limited right rectangular quasi-conic section aperture are

then developed as an example. In Section VI, the spatial resolution of the

solution obtained is developed, yielding a set of short pulse target resolution

radar system parameters. In Section VII, the special cases of two- and one-

dimensional inverse scattering, the special case of certain given simple

geometrical shapes of the aperture, and the special case of a priori knowledge

of certain symmetries possessed by the scatterer, are discussed. The special

case of a priori knowledge of the scatterer being a surface of revolution

about some axis is treated in detail. In section VIII, results of the three-

dimensional numerical reconstruction of a sphere from a variety of aspect angle

and frequency band limited cross section data, obtained numericaly by Mie's

exact solution for the direct scattering by a sphere, are presented. Similar

results for a cylinder are also presented. In section IX, plans for future

numerico-experimental work are outlined, and the extension of the monostatic
physical optics inverse scattering solution for stationary perfectly con-
ducting scatterers to a generalized monostatic-bistatic inverse scattering
solution for moving scatterers of arbitrary (unknown) conductivity is briefly
In the concluding section IX, conclusions are drawn about the

discussed.
merits of the presented solutions over the conventional synthetic aperture

radar imaging technique.
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SECTION II
THE PHYSICAL OPTICS CROSS SECTION

The scattered magnetic field H® in terms of the induced (by the incident
field) surface current density K on the surface of a perfect conductor is given

by [1]

HE = § VexK ds (1)

s

where the Green's function ¢ and its gradient are given by

eikr
¢ = Gur (2)
v¢=351r¢. (3)

The Physical Optics Approximation [2] for the induced surface current

density in terms of the incident magnetic field H® is

2nxH*,  on the "illuminated" segment of s,
K = (4)

0 » on the '"'shadow" segment of s.

Thus, by (1), (3), and (4), the scattered magnetic far field Hf, in terms

of the wave number propagation vector k® of the scattered far field, is

Hf = =2i ka ¢ an’L ds . (5)
ki~n<0
5 e .ﬂvf:::bi“;.--w.-‘&‘ 2 S T
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If the incident field H® is taken as a plane wave of the form

(6)

in the vicinity of the scatterer, where k* is the wave number propagation
vector of the incident field, and the range and phase normalized (ir -the
coordinate system in which the scatterer is described) scattered far field

is taken as

Hf = 1 s e”(s')(
VAnre

then for the case of

K=k =k,

(N

(8)

i.e., the monostatic case, (5) reduces with the aid of (2), {(8), and the

transversality of the incident field to

i
§=—
vn
ken>0

eﬂz}k.x keds 1

(9)

Consistent with the conventional definition [3] of the power cross section

o and the field cross section p

S=p1 (10)
[°}2
o = pp* = 4nr? (11)
|#*]2
equation (9) yields for the physical optics field cross section the well-
known expression [4]
i ~21kex
0 = — e k‘dS [y (12)
%
ken>0
6
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For a short-pulse target resolution radar system to be effective, its |
pulse length must be short compared to the target size; furthermore, since
the fractional bandwidth of such a pulse is limited by practical considerations
to nuch less than unity, it follows that the largest wave length in the
spectrum of the transmitted pulse must be very short indeed compared to the
target size. The physical optics approximation (12) is thus a good model
for the direct scattering theory for such a short-pulse target resolution
radar system. For a detailed discussion of the physical meaning and

34 d o s

implications of the physical optics approximation, i.e., its being a total
first order local scattering theory, consistent with short-pulse radar
concepts, the reader is referred to an earlier work of this auther [S].
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SECTION III

THE INVERSE SCATTERING IDENTITY

Introducing the variable ¥ defined as

Kk = 2k (13)
yields for (12)
i
plK) = = e 1% wags . (14)
A7
Ken>0
Thus
p¥(-k) = i e X ids (15)
- -— S—— L] ,
VAT
Ken<d
and
: iKeX ' -iKeX
p(K) + p¥(-K) = — Keds + — f e K+dS (16)
v/ 4t

i
) Fj(e-m Treds 17
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Since the integrand of (17) is continuous and differentiable on s and in

¥
v banded by s, it follows by Gauss' theorem that

P .
oK) + p* (k) = — | Vetke™ %) av (18)
Var J
v
2 'of
K .
= — | X gy (19)
VA |
\}

Introducing the quantity T'(K) defined by

p(K) + p*(-K)

T(k) = o , (20)
K2
yields for (19)
Tk) = je'“‘"‘ dv . (21)
\"

Defining the characteristic function y(X) of the scatterer by

1, Xinv,
y(X) = 3 (22)
o, Xxnot inv ,

permits the reformulation of (21) as the three-dimensional Fourier integral

T(K) =J‘e““‘c.x ¥{X) d3x . (23)

-0

If the volume v of the scatterer is finite, then by (22)

fly(x)i d3x = v

<o (24)
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it thus follows from (23) that for finite sized scatterers the three-dimensional
inverse Fourier transform Oof I'{¥) exists uniquely; i.e.

X = (21)3]{3“‘.)( PO ¢ (25)
-00

With the aid of (200, (25 can be reformulated as follows

1 . ® *
’ Ko -K
Y0 = —— Je'“xi’%}—d% +fe' X——Z——"i g3 ; (26)
47
- -0

which, after replacing k Dy -¥ in the second integral of (26) yields

1 p © ) ) N
- iKeX p(f€) 3 -ikex p (K) 5 27
y(x)-—‘ms/2 ‘ e p\?\d K e - d°k (27)
o0 oo *
— ! iKeX Q(K) d3 + 1 KX O(K) d3K' N (28)
) 4."5/2J ° K ‘ 47572 © S
_ ! Re mHCOX o Sk) a3 (29)
= 5/ e “L I

Both inverse s~atte€ring identities (25) and (29) clearly require
complete scattering information; namely, knowledge of p(Kk) over all K-space
(i.e., all frequencies and all aspect angles).
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SECTION IV

THE FINITE APERTURE INTEGRAL EQUATION

In practice p(K) is known (measurable) only for an incomplete finite
portion of the complete K-space; namely a K-space aperture consist.ng of a
limited (finite) frequency band and a limited aspect angles band. Furthermos
(23) is valid only in the Physical Optics regime (wave length short compared
to the overall size of the scatterer), and hence (25) must either include
fictitious (Physical Optics scattering data in the Rayleigh rexime, which is
physically not realizable) iow frequency scattering data T'(k), or no such
data at all. It is thus to the problem of determining what can be deduced
about a scatterer (i.e., y(X)) from such limited high frequency finite
aperture data that the ensuing sections are addressed.

Let A(k) be an aperture function defined as

A(k) = C(k) W(K) , (30)
where C(K) is a characteristic aperture function defined as
1, for k for which I'(k) is known,
Cik) = (31)
0, for ¥ for which I'(k) is unknown,
and where W(K) is any appropriately chosen (in general non-zero) aperture
weighting funetion, subject to the conditions
flA(K‘: a3k <o, (32)
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Thus, if the K-space volume of the aperture is finite, and/or the
aperture weighting function is appropriately chosen, then the three-
dimensional inverse Fourier transforms of the aperture and characteristic

aperture functions exist umiquely, i.e.

Ke
alx) = g | ™ A (33) o
J-m
1 rle'X
: cx) =53] e Ck) d3 . (34)
Vo

i ek s ki a2 ey . 5 PR v LY sy 20, ~n whd 3+ ~ .
EE S = R A > ... .
M < )

Thus, by (25) and the three-dimensional convolution theorem for three-

dimensional Fourier transforms, it follows that

. 43
. i a(X)*y(x) = Té':r)'gfe“c.x T(Kk) Alk) d3« , _ (35) ..
3l - \
3 i
. . 3‘ - A
é which by (30) and (31) reduces to 3
3 l !
[y :
alX)xy(X) = <—21153f3m'x (k) WiK) d3¢ , (36) R
C - ¥

where T(k) is clearly known in the domain of integration C: i.e., the
aperture. The right-hand side of (36) can thus be taken as known; say the

known function g(x); i.e.

N . . e e C

= 1 K
g{x) =m3fe' X T(h) W(K) d3¢ . (37)
C

] SR

The three-dimensional inverse scattering problem for a finite aperture
thus reduces by (26) and (37) to the three-dimensional non-singular convolution
integral equation (a Fredholm integral equation of the First Kind) ot
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fa(x~x') yix') d3x' = g(x) . (38) {
i
This integral equation (38) can be solved numerically by a variety i
¥
of existing techniques such as the matrix methods of Ritz-Galerkin [6], the H
associated Least Square Best Estimate iethod [7], and the associated moments }
method of Harrington [8], the Eigen-function expression methoed of %
Toraldo Di Francia [9], leading te so-called super-resolution, and the é
k-space method of this author [10]}, which also leads to super resolution. 5
Several closed form solutions of (38) for apertures of specific geometry g
have been obtained by Lewis [11]; an alternate closed form solution of (38) §
for apertures of general arbitrary geometry is presented next. %
Eo i :
;. 1 )
E
3 i ) :
-8
3
3 4
3 i
s s
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SECTION V

A SOLUTION OF THE FINITE APERTURE INTEGRAL EGQUATION

The solution of (38) for y(X) is greatly facilitated by the special
properties of y(X) (i.e., a priori knowledge that y(X) is a characteristic
function of the form (22) ) and the possible judicious choice of the aperture
function F(x).

Let the x3-axis be chosen as passing through the (near) center of

the aperture A (see fig. 1). Next, let the aperture function ¥(x) be
chosen as

W{K) = k3 (39)

It thus follows from (30), (32), (33), and (34), and again the three-

dimensional convolution theorem for three-dimensional Fourier transforms that

alx) = c(X)x8(x)8(x)6"(x3) , (40)

where c(X) is known, i.e.

_ ] iKeX 3
c(x) = (Zn)3fe a3 . (41)
C

It thus follows from (38) that
c(X)%#8(x})8(x)8 (x3)xy(X) = g(x) , (42)

which reduces to

- i ot i 1 St T L
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FIGURE 1
THE APERTURE AND SURFACE COORDINATE SYSTEM
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c(X)* 33 g{x) . (43)

Since yiXx) is a characteristic function of the form (22); namely and
particularly, that for fixed values of X3 and X;, y(x3) is a dual step
“unction in x3 of unity magnitude and steps at the lower and upper surfaces,
say Z'(xy,x2) and Z(xy,X,) respectively, of the scatterer (see fig. 1); it
+5llows that

_g_)Y(_s - 5()(3 - Z'(XI:XZ)) - 6(X3 = Z(XI,XZ)) > (44)

which by (43) yields

clxX)%8(x3 = Z'(x3,%2)) = clX)*6(x3 - Z(xy,%p)) = g(X) . 43)

Examination of (20), (26), and (37), and symmetry and physical
considerations (i.e., the implications of (4) and (12)), thus yields for

the upper surface Z(xj,x,) only

i . K3 O(K)
(X)xb(xg = 2lxy,xg)) = = ol | —— ] g3, (46)
47572 k2
provided
WiK) =W (k) , (47)

vhich is assured by (39).

It is physically reasonable (by the implications of (4) and (12) )
that informaticn about the lower surface Z'(x;,X;) should only be obtain-
able from scattering data from the lower image aperture A®(~€), Tt is now
evident that the introduction of the image aperture served the sole purpose
of a mathematical artifice which pexmitted the application of Gauss' theorem
to (12), yielding (25) and (29); and that knowledge of scattering data in

19
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this image aperture is not needed.

The three-dimensional convolution on the left-hand side of {46), say
x({X), reduces to

X(X) = ciX)%8(x3 - Z(xy,x%3)) (48)
=Jj c(xl-x{,xz-xé,xa-Z(x{,xé)) dxi dxj (49)

Thus
x(X) = - 4";/2 Iceix'x [K—s—;g-(—xi] a3 , (50)

where y(x) is a resolution density function which is a measure of the location
of the upper surface Z(xj;,x;). That x(X) is indeed such a resolution density
function can best be visualized by considering the limiting case of an
infinite aperture function A(X) for which c(X) = §(x); for such an aperture,
by (49)

! ! - 1 1 ] ] 1
f[é(xl xl) 6(x2 xz) <S(>(3 Z(xl,xz)) d><1 dx (51)

-0

X (%)

8({xg = Z(x1,%2)) (52)

]

whereas for a practical realistic aperture of finite K-space extent, the
spatial extent of the non-vanishing portion of c(X), and hence the non-
vanishing portion of x(X), is still small compared to the size of the
scatterer (see Sect. VI). In fact, it is this resolution function x(X)
which determines the resolution of the solution (50); a resolution which can
only be exceeded by the super-resolution method mentioned earlier.
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- A three-dimensional density plot of |x(X)| thus represents the
smeared geometrical image of the surface of the scatterer; the spatial extent
of the smearing clearly being the spatial extent of c(X), i.e., the

resolution.

A Best Estimate of Z(x;,x,) can alternatively be obtained by a variety

f A of correlation (between (41) and (49)) methods, employing Fourier transform g
I f :"54 theory. ]
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SECTION VI

THE RESOLUTION

The resolution in x-space is clearly the spatial extent of the nearly
non-vanishing extent of x(x). It thus follows from (30) through (38) and (49)
that the resolution in any one direction in x-space is the reciprocal of the
k-spatial extent of the non-vanishing portion of the Characteristic Aperture

Funetion C(k) in that same one direction.

The finite aperture inverse scattering solution (50) can clearly be
reformulated in a variety of desired practical (radar) spherical coordinate

systems. For the particular spherical coordinate system shown in fig. 2,

i.e.

ecos £ sin g
K =« sin & (53)
cos £ cos L
d3 = k2 dk cog £ df dr , (54)

the inverse scattering solution (50) for the right rectangular guasi-conic

section aperture shown becomes

. K2 Eo Zo
i . . )
x{x) = Y J. J.elnxz sin § eiK cos £ (x) 8in ¢ + Xy cos ©) o(k,E,0)
M1
Kyl ~&o ~Lo
X cos r dt cos?g d5 k dx ,  (55)
where
~ b it <. e TR T TS e e R
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where ko and Ax are the carrier and bandwidth of the transmitted spectrum

i

S respectively.

T Examination of (41) and (49), after a similar reformulation into this
same spherical coordinate system, readily reveals (after small angles

approximations) the resolution in range and cross ranges to be

-1
- Ax; = o BT Az 2Zq (58)

v

=1 ,
By = =7 AE = (59)

u

N
YV
o

we

Bbxg = = (60)

G S ek i s 11005 s imnls VA Wb o501 26 AR e
.

This resolution can only be exceeded by the earlier mentioned

techniques of super resolution.

Equations (58), (59), and (60) are thus the eguations for the parameters

of a target resolution radar system.
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SECTION VII

THE SPECIAL CASES

The special cases of the one- and two-dimensional inverse scattering
problem (i.e., scattering data restricted tc a K-space line or plane
respectively, obtained from a three-dimensional scatterer) can be treated by
applying the methods of Lewis [12] or of this author [13] to (30) et seq.

Namely, by choosing the characteristic aperture function for the two- and
one-dimensional special cases respectively as

C(k)

Clky,kp) 6(k3) (61)

C(K)

C(Kl) G(Kz) 6(K3) (62)

The three-dimensional convolution integral equation (38) reduces respectively

to the two- and one-dimensional integral equations
alxy,xg)#B(x),Xy) = glxy,X%2) (63)
a(x))xalxy) = gixy) (64)

where B and a are the thickness distribution function in the x3-direction
and the aqrea distribution function orthcgonal to the xj-direction of the

scatterer respectively, and g(x;,x») and g(x;) reduce respectively to (see
(37) et seq.)

9lx1,xp) = (2:,,2Je”"1"1+"2"2’ Tlky, k) Wiky,kp) dip dig (65)
c

fin v oma
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alx;) = E}I-Je“‘l"l Tlky) Wky) dig (66) -
c

1
¥
.
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The non-singular integral equations (63) and (64) can be solved for B

-
oo
R S WY

and a by any of the previously discussed means.

34 'lf% The further special case of a priori knowledge of the scatterer being
a surface of revolution about the x,-axis (see fig. 2) can clearly be treated
by the preceding two-dimensional formulation (63) and (65) by recognizing
that the profile function (generatrix of revolution) of the scatterer is
38(0,x,); thereby further simplifying (63) and (65) after the appropriate
nodifications. A more direct treatment of the problem of the surface of

M2 ok gl o B sk Ris N

52k,

e Mg

{?- revolution will be presented subsequently.

5 é The special cases of the aperture A(Kk) being of certain given

1 § geometrical shapes can be treated by applying the method of Lewis [14] to i

o 3 A

}, . ? (30) et seq.

f % The special cases of a priori knowledge of the scatterer possessing "

;- % certain geometrical symmetries can be treated by applying the methods of this :
o
" 3 author [15] to (30) et seq. As an illustrative example, the case of the :
L “g scatterer known to be a surface of revolution about the x,-axis (see fig. 2), R %
s %‘ is presented next. A
5 4 ;
b 4 i)
,§ '?‘ For such a scatterer, the monostatic -cross-section clearly is ee
gv ~? independent of the longitudinal aspect angle z; i.e. , ;
f{ } plk,E,z) = plk,E) . (YD) : é
P -
% %5 Furthermore, the profile function x3(x;) of such a surface of revolution :
%. & (see fig. 2) is given by the function describing the upper surface Z(xy,Xs) o

at the plane xj=0. It thus follows from taking the limits of integration
over ¢ in (50) as from 0 to 2w, setting x;=o in (50), and, with the aid of

the integral representation of the Bessel functions, that
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x(X],%3) = olK¥1 811 & J1(kx3 cos £) plk,E) cost dE k dk , (68)
2q3/2
K1 ~&o
which for small angle approximations yields the doubly truncated two-
dimensional mixed Hankel (Fourier-Bessel)-Fourier transform
Ko Eo
1
x{x1,x3) = Jy (kx3) ehd’;><1 plx,E) dE x dk . (69)
2ﬂ3/2
K1 -Eo

It is noteworthy that, as expected intuitively, only two-dimensional
scattering information (in « and &; i.e., in frequency and one aspect angle,
the latitudinal aspect angle) is required for an inverse scattering
solution by (68) or (69).

Solutions are also obtainable for the various combinations of the

special cases cited.
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SECTION VIII

NUMERICAL RESULTS

The solution to the integral equation (38) proposed by Lewis [11] was
successfully numerically tested for a sphere by this author in 1969. This
test consisted of a computer implementation of a special case version of this
solution, applicable only to scatterers about which only a priori knowledge
of cylindrical symmetry exists. This test essentially confirms the correctress
of the basic inverse scattering identity (25) and the finite aperture integral
equation (38). This solution was, however, not pursued further because of its
inherent practical limitations. These limitations are the lack of generality
of the required k-space aperture (i.e., the required aperture is impractical
for physically realizable radar systems; which is not the case with this
author's solution 50), the error enhancement introduced by the process of
numerical differentiation of noisy scattering data (vis-a-vis the error
reduction resulting from the process of integration of such data in solution
50), and the unapplicability of the Fast Fourier Transform (FFT) to this
solution (which is essential if large amounts of data are to be processed in
reasonable time by existing computers, yielding three-dimensional high-
resolution descriptions of arbitrarily shaped scatterers about which no a priori
knowledge of special geometry exists).

Solution (50) was computer implemented with the aid of the FFT for
arbitrarily shaped apertures, realizable with existing radar systems. This
computer program was tested with the exact solution of Mie for scattering by a
sphere, with a variety of band limited aspect angles and fractional frequency
band widths 8 (see fig. 3), with the resuits shown in fig. S5 through 8. The

basic inverse scattering identity was also tested by tnis program; with results
shown in fig. 4.
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Only x3=0 "slices" of the reconstructed scatterer are shown in fig. 4

through 8; however, several other than x3=0 "slices' were also numerically
reconstructed correctly, thus confirming the three-dimensional capabilities
of solution (50). A full band-width three-dimensional display of a recon- ;

structed sphere and cylinder are shown in fig. 9 and 10 respectively.
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( T PRESENT STATUS AND FUTURE WORK T'I.ANS'

. '
| g‘: f:% o The fast Fourier transform computer program utilized in the numerical
« ) .‘t - work summarized in sect. 8 was.an in-core FFT program limited to about
! E ) ? b 16,000 data points. For increased resolution, particularly at high fre-

quencies, low band width, and small angular apertures, it is necessary to

} ; have an FFT program operative on about (100)3 = 10® data points. Since data
3 e i N of this size cannot be stored in core, and must be stored externally (e.g.,

; drum or disc), an external-storage-FFT program is currently being implemented
under a foilow-on contract. Under this follow-on contract, the inverse
scattering solution utilizing such an external-storage FFT will also be

o tested against actual measured scattering data from a variety of modeled

shapes of varying complexity.

The physical optics inverse scattering solution developed in this
part I has been extended from the presented monostatic solution for
stationary perfectly conducting scatterers to a generalized monostatic-
bistatic inverse scattering solution for moving scatterers of arbitrary
(unknown) conductivity. This generalized physical optics solution tusns out
to be identical with the first oxder solution of the exact inverse scattering
-solution presented in paxt II. It is for this reason that this generalization

i

i

is not presented here.
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CONCLUSIONS
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AR e A e ik 3,

The solutions developed in this part I can be viewed as solutions to

the frequency band limited and aspect angles limited short pulse synthetic
The

SRS ok KA1

SN

oy

% aperture radar imaging (and associated data processing) problem.
_ é . solutions presented are based on rigorous electromagnetic scattering and

'f inverse scattering theory applicable to spatially distributed scatterers,
'3 T yielding real three-dimensional geometrical images; vis-a-vis the
conventional two-dimensional radar imaging technique which is based on the
heuristic approach of isolated point scatterers (scattering centers)
concepts, yielding so-called radar images (or maps) [16], which most often

do not resemble the real geometrical images of the scatterer.

A

The merits of the solutions presented in this paper over the
conventional radar imaging technique deserve the following further exami-
The rather unsatisfactory results of the conventional radar imaging

IR SR £ SCI Ry Sy a7y

nation.
technique are essentially the consequence of the technique being based on a

heuristic approach to the problem; i.e., the approach consists of considering

a spatially'extended‘target as a fictitious ensemble of identifiable,

T T T e

stationary, non-interactive, non-dispersive, and isotropic point scatterers.
From a rigorous electromagnetic scattering point of view, a spatially

extended scatterer is neither an ensemble of point scatterers, nor are these

fictitious point scatterers in principle identifiable, stationary, non-
interactive, non-dispersive, and/or isotropic scatterers. (The point
scatterers are not always identifiable by virtue of the so-called registration
problem; i.e., that the point scatterers cen be continuously, consistently,
The point scatterers

and correctly identified for various aspect angles.
are not always stationary due to the fictitious relocation caused by changing

aspect angles.) Furthermoré, this technique does not contain basic unique ‘
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existence considerations, and/or rigorous considerations of the problem of

optimizing the results for incomplete aspect angles and/or frequency infor-

mation availability. The attempts to convert radar images to geometrical

images have.thus failed for precisely these reasons.

The solutions of this part I alleviate all these objections to the so-

called radar imaging technique by the rigorous application of electromagnetic
inverse scattering theory, based on rigorous direct scattering theory (and
not based on the heuristic model of a spatially extended scatterer as a

fictitious ensemble of identifiable, stationary, non-interactive, nom-

dispersive, isotropic point scatterers). It, therefore, avoids the problem

of the conversion of radar images to geometrical images, by sidestepping and
avoiding the radar image altogether, and addressing itself to the problem of

_ generating actual three-dimensional geometrical images directly from radar

data; including unique optimal results from incomplete observation aspect

angles and frequency information. )

ST Sy, .0 e

S v AVMJW/&*% g S e P TP




P A [ - - i P e (4

a2
i

B GE

R
ke £ N S—————_ T

.-.4 h w .mm -
E Vo
~ ‘ 3 \.,..
; .
». ' ' N
. *
” . P ¢ -,
: : = .
—t N
tul %
<C -
- (&1
. — [72] Y -
Ll .
& 7
= g
=~
= .
e B
- 3
| | =
& [3%]
H. i c
¢
£ :
,
K o ’
- M
Cod A ) ' R .t i
. - N P . . N N oy k




o e v e . F p R WY 4 ¢

G oraaeel

.

R P T

Sl s e R

ot o SAb BB PR
Shp s Obn g

S oS A S

e s LS

[P

+ o ———_——

n ———r

"y SR B A L2

¢

SECTION I

INTRODUCTION

s

In section II, the general inverse scattering and radiation problem
associated with the three-dimensional inhomogeneous scalar field Helmholtz
wave equation is formulated as a Fredholm integro-differential equation of
the second kind for the unknown fields and sources in the interior of a
closed surface in terms of the known ‘fields on this closed surface. It is
shown in section III that the known ansatz to this integro-differential
equation reduces to an angular spectrum Fourier integral if ths closed sur-
face integral is taken over the far fields at infinity. In section IV, this
far field integro-differential equation is reformulated as a purely algebraic
equation in the spatial Fourier-transform k-space, yielding a purely algebraic
closed form solution for the unknown fields in this k-space. This solution
is then transformed back into the spatial domain, yieiding a closed-form
solution to the far-field integro-differential equation, consisting of a
single integral resolvent operator, the resolvent kernel of which is the
steady state Green's function of the Poisson equation associated with the
inhomogeneous Helmholtz equation. This scalar inverse theory is clearly
applicable to quantum mechanics, acoustics, etc.

In sect. V, the inverse integro-differential equation and its solu-

tion are generalized to the vector wave equation resuiting from Maxwell's
equations.

A formal physical and mathematical definition of the inverse problem
is given in sect. VI; which, in essence, defines the inverse problem as that
of unknown boundary conditions and/or constitutive equations which define
the specific problem, given the general laws and the specific solutions
which are the observable phenomenology.
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The uniqueness, completeness, and well-behavedness of the inverse

solution is discussed briefly in sect. VII. .

I

It is shown in sect. VIII that the first order Neumann series solution
of thie inverse integro-differential equation, as well as the first order
approximation of the exact solution of this inverse integro-differential
equation, is identical with the equations governing synthetic microwave
holography. The physical interpretation of this first order approximation
is discussed, and shown to be equivalent to the physical optics approximation.

A fast Fourier transform method for evaluating numerically the exact
solution to the inverse problem is presented in sect. IX. ' '

In sect. X, the three-dimensional inverse integro-differential and its
closed form solution are generalized to four dimensions, with the surprisingly
simple result of the resolvent operator being algebraic. This four-dimension-
al solution is clearly applicable tc Doppier-contaminated fields scattered

or radiated by moving scatterers.

Since a distribution theory approach was taken in sect. II through X,
appendix I consists of a simplified and unified rederivation of the classical
Kirchhoff solution to the direct radiation problem, presented for the sake
of convincing the reader of the validity, elegance, and power of this distri-

bution theory approach.

Appendix II consists of the reformulation of Maxwell's equations into
a form containing only the fundamental electric and magnetic fields (vis-a-
vis the form also containing the displacement and induction fields) and the
total charge and current densities (vis-a-vis the form containing the free
charge and current densities only), thus yielding an electromagnetic wave
equation universally valid for all media. Also developed in this appendix II
is a suitably generalized constitutive equation - boundary condition relating
this total current density to these fundamental electromagnetic fields. i
Both these reformulations are essential for the subject matter covered in i

sect, V, et. seq.
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SECTION II

THE INVERSE SCATTERING INTEGRAL EQUATION

Gauss' theorem, when applied to the fector field V(g¢), yields

P
fds-v(gﬂ =} dv V.v(g¢) 1)
- s “v
r
= f§ dv Vz(g¢) R (2)
Yv

provided V(g$) is continuous and, hence, differentiable in v and on s. These
continuity conditions can be totally dispensed with if the scalar fields ¢
and g, and, hence, V(d4¢), sre taken as distributions [17]; specifically, if
¢ is taken as a fizld satisfying the inhomogeneous (neither source- nor
singularity-free) Helmholtz (time-reduced wave) equation

V2¢ + k% b==p , (3)

and g is taken as the associated free-space Green's function

iker

Q(XIX') = 34“r » (4)
r = x-x' , )
r=lr] (6)
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which satisfies the inhomogeneous differential equation

V2g+ ki g= -8 ™

4

and where both $ and g satisfy the radiation condition at infinity. (The
free-space wave number 3_%- = % is designated by ko, vis-a-vis the conventional
notation k, since the latter will subsequently be used to designate the
Fourier transform variable of the spatial coordinate x).

In order to further convince the redder not familiar with distribution
theory and its validity and power when applied to field problems, this same
distribution theory approach is applied in appendix I to.the rederivation of
the classical Kirchhoff method of integration of the field equations for
the direct radiation (and scattering) problem, without imposing the continuity
restrictions, and, hence, without the classical singularity isclation spheri-
cal surface which is taken to the limit of vanishing size. The derivation of
the inverse scattering integral equation presented in this sect. II can also
be accomplished by such classical means; however, the resulting mathematical
derivation is beset with vastly increased cumbersoms details, which only
obscure the physical meanings involved. ‘

The left-hand side of (1) yields

fds-v(gw = f(g Vo + ¢ Vg)eds (8)
s s '
= 3% 39,
f(g ot b e2ds €))
s

and the right-hand side of (1) yields
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~
jdv Vev{ge) = | dv Ve(g V¢ + ¢ Vq)
v v
r
= | dv [ve(g V$) + V+(¢ Vg)]
v
~
= | dv (Vg-V¢ + g V24 + Vé+Vg + ¢ V2g)
o
v

r
= § dv (g V2¢ + ¢ V2g + 2V4eVg) ,
Jv

which, with the aid of (3) and (7) yields
Idv Vz(g¢) =Idv [g(~k3¢-p) + ¢(-k3g-8) + 2Vg+V¢]
v v

= f dv (~k3g¢-gp~k3gd-8¢+2Vg-V$)
Vv

=fdv(2Vg-V¢-2k§g¢—gp—6¢)

v
=fdv(ZVQ-V¢-2k%g¢) -fdv ap -fdv 8¢
v v v

If the field-point X' is taken as inside the volume bound by the

surface s, then
fdv s ¢ = ¢'

v

By the conventional Kirchhoff interpretation of (3) and (7) for the

internal (to s) field point X' (see appendix I),
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fdvgp=¢'+f(¢Vg-gV¢)-ds s ¢19)

v S s

where the right-hand side Kirchhoff surface integral of (13) represents the

contribution to the field at the field point X' inside s due to sources p
outside of s.

Thus, if all the sources are taken - as in v (i.e., inside s; i.e.,
p(X)=0 for all X outside s), then (19) yields

fdvgp=¢' . (20)
\ '
By a similar argument, if the sources outside of s do not vanish, then
these scurces external to s must be taken as giving rise to an externally

imposed (external to the inverse problem) incident field "’;', » given by (19)
as

b = - f(qs Vg - g Vé)eds . (21)

Equation (19) thus yields

fdvgp

v

(20.1)

]
-
L)
©-
o

=g (20.2)

]
where ¢ e is the scattered field at the field point X'. Since the scattered
field also satisfies the Helmholtz equation (3), equations (1) through (20)
remain valid if the field ¢ is taken as the scattered field ¢8 only. Thus
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b
E 1 :,i no formal distinction arises between the inverse radiation (active) and
i . . inverse scattering (passive) problems.
N With the aid of (18) and (20), (17) reduces to
‘ f , 2 2
i / J uv V2{ge) = 2 | dv (Vg+V$ - k& g ¢) - 2¢' . (22)
} v v
| = . With the aid of (8) and (22), (2) reduces to
I - )
-
‘I
| T ¥
l $* -Jdv (Vg-V¢~k§g¢=)=-%f(Q Ve + ¢ Vg)eds . (23)
{~ C ‘ s
I In the context of the inverse problem, the integrand of the right-hand
' side surface intogral of (23) is measurable, and, hence, this surface integral
‘ S is evaluable; it thus becomes convenient to take this right-hand side of (23)
', ~. as the known ansatz 6 to the inverse problem; i.e.,
o' = - %f(g Vo + ¢ Vg)eds . (24)
N :
j £ ' By (23) and {24), the inverse problem can thus be stated by the
f . . Fredholm integro-differential equation of the second kind
Eo N
[
’ o 3 é! -fdv (Vgevé - k3 g ¢) = 6 . (25)
. '
; i v
¥ N
P -
; B \ It should be noted that the classical Kirchhoff surface integral (see
1 = appendix I) vanishes in general if both the field point as well as all the
A | sources are inside the surface (i.e., X'€ s and p(X)=0 for all x § s), whexe
‘ ! as the ansatz surface integral {24) does not vanish in general for these same
)
'BE 49
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conditions. The physical reason for the vanishing of the Kirchhoff surface -

integral is clearly that there are no sources outside of this surface; since
this surface integral represents the fields produced by sources outside of
this surface. The mathematical reasen for this vanishing is simply that the
(<) sign in the integrand renders the two integral terms as canceling each
other. Whereas the ansatz surface integral does not vanish since these same
two terms add up by virtue of the (+) sign in the integrand (if the ansatz
is in the far field, then these two integrands (vis-a-vis integrals) are
equal). It is indeed remarkable that the sole distinction between these

two surface integrals should turn out to be the (+) vs. (-) sign in the
integrand, and that this sole transition from (-) to (+) should render the
Kirchhoff surface integral as a useful ansatz (surface integral) to the
inverse probiem.
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SECTION III
THE FAR-FIELD INVERSE SCATTERING INTEGRAL EQUATION

If only the far-field is known, then the surface integral of the
ansatz (24) can clearly be taken as a spherical surface at infinity. Let
R be the radius of this surface (see fig. 11); it thus follows that

B! = - } ?Tzf (g V6 + ¢ V)RR2 da (26)
Q

H
where the implied integration is now over the cdmplete solid angle Q.

The gradient of the Green's function (see eqn. (4)) is

eiker a
Vg = Sz (ker - D P, @27

which, in the far-field (retaining only terms in %ﬂ reduces to

s eikor
Vg = ikol “y—— (28)

eikor

= ik, (29)

4nr ’

where Ko is the far-field observation propagation wave-number vector (see
fig. 11).
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FIGURE 11
FAR-FIELD GEOMETRY

The field ¢ in the far-field (retaining only terms in —é-), -can be .

expressed by virtue of the radiation condition at infinity, as (see fig. 11)

eikoR

$(X) = (ko)

Va1 R

(30)

where y(K,) is now the range and phase normalized (relative to a given

coordinate system in which the far-field is measured and the near field ¢ is.
to be determined; see fig. 11). ¥(Ke) clearly depends on the observation
direction Ko only. The factor V4w was chosen for the sake uf consistency with

the conventional definition of power cross section.

The gradient of this far-field (30) is thus

eikoR QikoR

(iker - 1) R wiko) +

Vé =
Y4w R2 Ydr R

(ko)

52

(31)

e "
. »
.

ity Ny o

R e T A R SRR

b
PRI N o oy

N
IRV~ SHAN

T2

e

N .

Sultd

%L



L’ X S

which; in the fazx-field {(retaining only terms in éﬁ, reduces to

et

eikoR

[ikoR y(ko) + Vi(Ke)] . (32)
Y4 R

eikoR

V4 R

Ve =

[ikowtko) + WP(ko)] . (33)

With the aid of (4), (29), (30), and (33), (26) reduces to

ikoR

[21kow(Ko)+V3(Ko)] R R2 4 (34)

R+ dnr o R
Q

]

-3 ey, ~ -~
-4 a7 ?’T:J‘eik"‘”m B [21ke R w(kodtRevptkad] 0, (35)
]

Since P(ko) varies only in the angular (observation) direction, and

not in the radial direction, it follows that (see fig. 11)

ﬁ-vw(ka) =0 . (36)

Also (see fig. 11)

ko'R = ko . (37)

Equation (35) thus reduces to

~3 A . »
B! =~ 1k, (4m)~ 72 ﬁ”j"ﬁj{em‘”’“ Br-w(k,) e . (38)
Q
53
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Examination of fig. 11 readily reveals that

g’l{f:‘bt B_ eiko(r‘FR) = GZikoR e"ikc X! . (39)
©r
Equation (38) thus reduces to
_3 ~ik. .
BY = ~ ko (4m)~ 72 eZik"rIe ke X' (ko) do . (40)
Q
Since the arbitrary phase factor of (2koR) is common to all the .

measured ansatz, it becomes convenient to arbitrarily chose it as an integer
multiple of 2w, thereby reducing (40) to

-3 - .
6' = - iko (4'"') /zfe iko x' w(ko) dg . (41)
Q

It further becomes convenient to now interchange the variables X and

nea TN,

X' in (25) and (41); thus yielding the far-field integro-differential equation ;
and its ansatz respectively as .
$(x) -f[v'g<x|x'>-v'¢<x') - k& g(xX|x") ¢{x"] dv' = 8(X) (42) 3
-3 -1k, ¢
8(xX) = - iko (4m /2.1.9 1Ko X ¥(ko) df , (43)
i)

where the volume integral in (42), bound by the surface at infinity, is now

over -all space.
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SOLUTION OF THE FAR~FIELD INVERSE SCATTERING INTEGRAL EQUATION

In cartesian coordinates, the Green's function g(xlx') can be written
as (see (4), (5), and (6)) ;

(44)

glxjx!) = g(x-x") .

K

PIONC R O LR N ) Lo - . L7
Ry BB b Skt S i S o L.-.<.,~ L ey s

The integro-differential equation (42) can thus be written as the

| ;! )
‘ B | three-dimensional convolution equation
) ; (%) -J} [V'gtx-x")-v'¢(x") - k& glx-x") ¢(x")] d3x' - 8(X) , (45)

which, in a more compact notation, is

¢ - Volvp + kE gd =0 (46)

b A LB L 5t e e il 38 i i

where the operation (%) designates the vector dot-product convolution.

If the fields and the Green's function in (46) are taken as distri-
butions for the sake of the existence of their three-dimensional Fourier

transform; i.e.,

. N . s - - R
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. b
(X)) <+ $(K) 47)
8(R) «» o(k) (48)
gix) « G(k) . (49)

and, by the three-dimensional differentiation rule for Fourier transforms

76 (X)) «> 1k o(k) (50)

vgix) > ik 6(k) , - (51)

then, by the three-dimensional convolution theorem, the three-dimensional
Fourier transform of (46) yields in the three-dimensional transform k-space
the algebraic equation

(k) + k2 G(k) oCk) + K2 6(k) ok) = o(k) (52)

[T+ k2+Kk)GJe=0 . (53)

Furthermore, since for the three-dimensional delta-function taken as
a distribution

84X =1, (54)

it follows that the three-dimensional Fourier transforxm of (7) yields in
k-space the algebraic equation
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v -k2Gk) + K2 Gk =~1

1
G(k) = ———
k2 -~ k3

With the aid of (56), (53) yields

o(k) + (k2 + k3) G(k) &(k) = otk)

k2 + k3
o(k) + { ——— ] o(k) = o(k)
k? - k3

k2 + k3
1+ —— 1 3(k) = o(k)
k2 - k3

k2 - k2 k2 + K3
+ atk) = o(k)
k2 - kg K2 - K3

2k2
NPy (k) = o(k)
k "ko

k2 - K3 :
(- " ) otk?
2K

2
§olk) - =5 otk) .

2Ko

a(k)

W

Next, the steady-state Green's function go, given by
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go(X) = anr > (64)

satisfies the Poisson differential equation (associated with the Helmholtz
equation (3))

V2go(X) = - 8(X) . (65)

Again, taking this steady-state Green's function as a distribution,
assures the existence of the three-dimensional Fourier transform of this
steady-state Green's function; i.e.,

go(X) <> G, (k) . (66)

It thus follows from (65) by the three-dimensicnal differentiation
rule that

- k2G,(k) = - 1 67

Go(K) = %2 . (68)

Equation (63) can thus be written as

k2
$(k) = § o(k) - 5’ Go (k) o(k} , (69)

"
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]
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and by the three-dimensional convolution theorem, it thus follows that (still

in cartesian coordinates only)
_ k$
o(X) = § 6(X) ~ 5 9o (X)#8(X) (70)

= 8(x) - ;—%fﬂ‘go(x-x') 8(x") d x! ; (71)

and, consequently, in any coordinate system

2
${x) = % 6(x) - -‘2‘-° fg°<x|x') 8(x") dv' (72)

It thus follows by (64) that the solution to the integro-differential

equation (42) is

2
$(X) = £ 8(X) - gfr—fé a(xX") dv' . (73)

It is remarkable that the resolvent kernel [18] of the integro-
differential equation (42) should turn out to be the steady-state Green's
function; the physical implications of this fact, which are yet unclear,

should be explored.
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SECTION V

THE GENERALIZATION FOR THE ELECTROMAGNETIC VECTOR FIELDS

The generalization of the previously developed scalar field inverse

scattering theory to a vector field inverse scattering theory applicable to

the electromagnetic field can be accomplished analogously to the generaliza-
tion of Stratton and Chu [19] and Franz [20] of the Kirchhoff method of inte-
gration of the scalar field equations to vector fields, applicable to direct

scattering or radiation; i.e., by replacing (1) with Gauss' thesrem of the

form

§ds><‘7><(gE) =

n

r
dsxvx(gH) =

S

J

P
dv Uxvx(gE) (74)

v

J

dv Vxux(gH) s (75)
v

where the electric and magnetic vector fields E and H satisfying the vector

wave equations

vxVxE - k% E = iwpo V (76)

vxUxH - k2 H=vd 77

which replace the scalar wave equation (3) used previously.
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From here on, the generalization proceeds in a fashion totally analogous ‘s_
to the previously presented development; however, with the following one §
important exception. The scalar theory developed consists of a single field, iy

and, hence, a single statement of Gauss' theorem (1) and a single wave equation '
(¥). The vector theory consists of two fields (the electric and magnetic ‘
fields), and, hence, a dual statement of Gauss' theorem (74), (75) and two

wave equations (76), (77). This dual set of vector equations, is, however,

coupled by a common source (the current density J in the wave equations (76),

(77)), as well as Maxwell's equations, which are a sct of first-order

differential equations for which there is no scalar analog, and which are

used to entwine the coupling.

ex

e b e

Regretably, however, such a procedure, although executable, tends to
bog down in massive, cumbersome, and inelegant details, which tend to obscure
the physical meanings involved. An alternste, much simpler derivation, which
yields the identical results, will thus be presented next. i

.s».\";.«'.-c.‘.‘.b-n.x‘oxr-4»'0&-&9514-.&;&"-“»‘4‘/ St
< S

Riviidniees (o

Prior to proceeding with this derivation, however, a digressionary

.é discussion of the form of Maxwell's equation most appropriate to the inverse T
f?

O problem is in order. For organizational reasons, however, this discussion ;
f§ is relegated to appendix II, to which the reader is referred. -
; The universally valid time-reduced vector wave equation for the )

magnetic vector field H, in terms of the total currents J (see appendix II) is

VxVxH - k3 H=vxJ , (78)

which reduces to

WeH - V2H ~ k2 H=vd , (79
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which, by Maxwell's second equation (see appendix II, eqn. (33)), further
reduces to

PH+ kiH=-vd . (80)
If a source vector p is defined as
P =V, (81)
then (80) can be written as
VH+kiH=-p . (82)

If Hu and Py designate the cartesian components of the vectors H and

P respectively (where p=1,2,3.), then (82) can be rewritten in a mixed vector ~
cartesian tensor notation as

vznu + k3 Hu =0, ; u=1,2,3, (83)

Each of the three equaticns (83) clearly is of the form of the scalar
field wave equation (3), it thus follows that the entire previously developed
scalar field inverse scattering theory is applicable to each of the three
cartesian componants of H and p. The inverse scattering integro-differential
equation (25) and its ansatz (24) can thus be written (still in mixed vector -
cartesian tensor notation) respectively as
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LI . - k2 = g! =
Hu fdv (vg VHu ks g Hu) eu » 1u=1,2,3, (84)
v
R . -
eu %fds (g VH‘1 + H‘j vg) » W=1,2,3, (85)
s

which clearly can be reconciled into the pure vector notation form

Hr -fdv (vg-vH - k3 g H) = 6" (86)
v

o' =—%fds-(g vH+vgH . (87)
S

Similarly, the far-field inverse scattering integral equation (42) and
its ansatz (43) yield respectively

H —fdv' (v'g'V'H' - k3 g' H') =0 (88)

-3 - L]
6 = - iko (4m) /2fe iko X w(ko) a > (89)
Q

where, by (30), the range and phase normalized magnetic far-field ¥(k.) is
given by

ikeR

H(x) = vike) . (90)

v4r R

and again similarly, and finall.y, the solution (73) to this far-field inverse
scattering integral equation yields
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5 H(x) = 4 60(x) ~ -g—;f%—ﬂx') dvt . (91)
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Unfortunately, however, no such simple derivation for the electric

field has been found to date. However, commencing with (74), (76), et seq.,

a set of electric field equations totally amalogous to (86) through (91) is
derivable; i.e., a set of equations (86) through (91) in which the magnetic
field H is replaced with the electric field E. The details of this

.. derivation are not presented here because of their cumbersomeness, and
because these details shed no light on the physical meanings involved.
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SECTION VI

FORMAL STATEMENT AND SOLUTION OF THE INVERSE PROBLEM

An academic Jigression to a formal statement and definition of the
inverse problem is undertaken next. First, however, a careful examination,
formal restatement, and definition of the classical direet problem is in
order.

From a mathematical point of view, a direct problem consists of a

_given differential equation, a given set of boundary conditions, and an

unknown solution (or spectrum of solutions). From a physical point of view,
the differential equation represents the universally valid law, the boundary
conditions represent the nature of the specific problem, and the unknowns are
the observable phenomenology. Additional insight is gained by examining the
structure of the equivalent integral equation formulation of the direct
problem. Mathematically, such integral equation formulations are in general
arrived at in the following fashion. An integral representation of the
differential -equation is obtained (usually by an integration of this
differential equation with the aid of an appropriate Green's function), which
is then combined with the appropriate boundary conditions to yield an integral
equation. Physically, the integral representation of the differential equation
is merely an integral restatement of the umiversally valid law, which, in
general, clearly illustrates its global nature (i.e., that fields at one

point are determined by sources at all other points). Conversely, however,
the boundary conditions are a restatement of the specific constitutive
equations, which determine the specific problem. Such constitutive equations
are in general local in nature (i.e., the specific relation between the
sources at one point and the fields at that same point only). The following

equivalence between boundary conditions and constitutive equations is thus

" PRECEDING PAGE BLANK-NOT FILMED
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of importance. Mathematically, a constitutive equation is a spatially .

B e e

distributed boundary condition; and, conversely, physically, a boundaxy
condition is a localized constitutive equation. (Such boundary conditions - ..
constitutive equations in general arise from a localized imposition of the

» et o e 4 A M

appropriate laws of motion governing the source distribution.) From an
integral equation point of view, it is this boundary condition - constitutive
equation that determines and imposes the given known domain of integration,
and, hence, the nature of the specific problem. . -

From a mathematical point of view, an inverse problem thus consists of
a given differential equation or its equivalent integral representation, a
given solution (or spectrum of solutions), and an unknown boundary condition
(or its equivalent domain of integration). From a physical point of view,
an inverse problem thus consists of a given umiversal law, a given (observed,

measured) phenomenology, and an unknown constitutive equation.

Having defined the direct and inverse problems in the preceding
fashion, it follows naturally that if the differential equation (or its
integral representaticn) stating the universal law is the unknown, then the
problem can be classified as the basic or fundamental problem (there exists
no formal methodology to date for solving such problems).

The following short table is thus in order:

PROBLEM CLASSIFICATION

MATHEMATICAL ENTITY

PHYSICAL MEANING IF UNKNOWN, PROBLEM IS

Universal (Global) Law § Basic, Fundamental

Differential Equation
(or equivalent integral
equation representation)

Boundery Condition (or Constitutive (Local) Inverse

domain of integration) Equation

Specific Solution to Observable (Measurabie) § Direct )
differential (or Phenomenology

integral) equation

3
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The inverse scattering (or radiation) problem is thus the problem of
determining the unkrnown boundary conditions - constitutive equations (i.e.,
the etructure of the scatterer or radiator), given the field equations and
the incident and scattered (or tota® radiated) fields. The problem of detex-
mining the unknown source distribution that gave rise to the observed
scattered field (or radiation), although intimately connected with the
inverse scattering {or radiation) problem, is thus only incidental to, and
not the final objective of, the inverse scattering (or radiation) problem.
The distinction between the inverse scattering and inverse radiation problem
is the mathematical and physical triviality of whether the unknown structure

is radiating passively or actively, respectively (i.e., whether the observed

fields are measured actively ox passively, respectively).

o For the direct vs. the inverse scattering (and radiation) problem, the
following specific additional mathematically fundamental topological

§ distinction arises. For the direct problem, the Xirchhoff closed surface

£ | integral gﬁds°(g V¢ - ¢ Vg) relates fields at a field point located on one

‘é side of the closed surface to all the source distribution located on the other
side of this closed surface (see appendix I). For precisely this reason,
since the inverse problem is characterized by unknown fields as well as

! unknown sources, this Kirchhoff surface integral is thus rendered totally

X useless to the inverse problem. However, the closed surface integral

gﬁds-(g Vo + ¢ Vg) relates the fields at a field point located on one side of
I the closed surface to the source distribution located on the same side of

H this closed surface (see (24) and (25)). It is for this reason that this
latter closed surface integral is rendered a useful ansatz to the inverse

& problem.

3 § In the context of this definition of the inverse problem, it is thus
clear that neither a solution for the electric and magnetic fields (see (86)
through (91)), nor a solution for the total current distribution J that gave

rise to these fields, is a solution to the inverse problem; however, a
solution for the unknown boundary conditions - constitutive equations which
locally connect these electric and magnetic fields to the current distri-
bution; is a solution to the inverse problem. It is to this latter problem
that the remainder of this section is addressed.
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Given a solution for E and H by (86) through (91), the total current
distribution J can be computed on a local basis via the universally valid

Maxwell's fourth equation (see appendix II, eqn. (35) and (46)) for the total
current; i.e.,

J= - iwee E+ VxH (92)

Thus, given the electric and magnetic fields, as well as the total
current density, the coefficients of the generalized constitutive equation
(see appendix II, eqn. (49)), which determine (reveal) the structure,

_geometry, and electromagnetic properties of the scatterer (or radiator), can

be readily computed. In fact, since these scalar constitutive coefficients
in the vector constitutive equation are over-determined by knowledge of the
vector fields, a least-square-best-estimate (in the presence of noise) of
these coefficients can be determined as well.
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SECTION VII
UNIQUENESS, COMPLETENESS, AND WELLBEHAVEDNESS OF THE INVERSE SOLUTION

The problem of uniqueness, completeness, and wellbehavedness of tiie
inverse solution (under incomplete and noisy exror contaminated ansatz) is
intimately connected with the algebraic nature of the k-space transform
representations (57) and (69) of the inverse integral equation and its
solution reprectively, the Fourier surface integral transform nature of the

associated ansatz (43), and the extension of the entire inverse theory and

its solution to the wide-band (short-pulse) case. For these reasons, both

the method of derivation as well as the final results governing the uniqueness,
completeness, and wellbehavedness of the solution are identical to the method

of derivation and results governing the physical optics inverse scattering

theory (see part I). A further detailed investigation and study of this

subject is, however, currently being undertaken under a follow-on contract

(to contract covered by this report). A detailed txeatment of this subject

is thus being deferred to subsequent report(s) covering this follow-on
contract.
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SECTION VIII
THE FIRST-ORDER APPROXIMATION.

The first-order approximation Neumann series solution of the general
inverse integro-differential equation (23), with the aid of (24), clearly is E

¢! =-%f(g V¢ + ¢ Vgleds (93)

S

which, for the far-field ansatz case, with the aid of (43), reduces to :

=3 —5k..
d(X) = - iko (4m) hfe iKo+x vlko) do (94)
Q

which turns out to be identical to the first-order approximation of the exact
far-field solution (73).

This first-order solution is identical to the synthetic microvave
holography solution of Tricoles [21], which has already enjoyed considerable
experimental verification. The derivation of this first-order solution can
thus be taken as the formal theoretical foundation of this synthetic micro-
wave holography.

In the derivation of the synthetic microwave holography equations, the ‘
"ansatz" is taker as §ds~(g Vo¥ - ¢¥* Vg) where ¢* denotes the complex ]
conjugate of the outwardly radiated fisld; which, in turn, heuristically
represents the "'direction of propagation reversed" equivalent"'inwsrdly
focussed" field. From a holographic point of view, this ansatz also couid
have been taken as @ds%g* v$ - ¢ Vg¥*), where g* denotes the complex
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conjugate of the "outgoing" Green's function; which in turn represents the
"ingoing" Green's function. Since the complex conjugate of both the field
as well as the Green's function satisfy differential equations similar to (3)

and {7) respectively, i.e.,

(95)

[t}

t
©

x*

V2p* + k3 ¢¥
V2g* + k3 g* = - & R (96)

it thus follows that the entire development of this report could also have
been done in terms of either this complex conjugate field or this complex
conjugate Green's function; with the sole exception that the ansatz would
have turned out to be the above holograpnic ansatz with the (-) sign in the
integrand (vis-a-vis the (+) sign in the integrand of (93)). It should be
pointed out that in the case of the electromagnetic vector field ansatz (74)
and (75), only conijugation of the Green‘s function yields the current resuits.
Such an approach, although heuristically somewhat attractive, tends, however,
to burden the rigorcus derivation of the exact inverse formulation and its
solution with mathematically cumbersome details, which also obscure the

physical meanings involved.
An investigation of the properties, limitations, and physical meaning
of this first-order approximation (93) and (94) will be taken up next. To

this end, let the source distribution p be computed from this first-order

approximation; i.e., by the basic wave equation (3),

p=~Vp -2y |, 97)

thus, by (24)
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;g j;§ , = iko (4m) /2.’.(v2 + K3y o tkeoX p(ko) de (99)
-} "
! -3 —iKo
i = ike (4m) /2f(-k% + k2 o ke X iy ag (100)
f§ j =0 . (101)
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The same result of (101) can be obtained, although mathematically much

o more laboriously, by replacing (94) with (93) in (98).

It thus follows from (101) that the source distribution ig not

j . reconstructable from the first-order solution; and that the fields reconstructed
i" .fﬁ ' ' by this first-order solution satisfy the homogeneous free-space wave equation
- Vp+kE =0 . (102)

1 This first-order reconstructed source-free field, satisfying the free-
space wave equation, is thus consistent with synthetic holography interpreta-
tion of the first-order solution (9%). The physical meaning of this first-
order solution is thus that of first-order scattering (or radiation), and

¥ i consistent with the physical optics approximation (direct "rays" only).

S e S Sl S

. The reconstruction of the unknown boundary condition - constitutive
equation (see sect. VI) which determines the unknown geometrical structure

and unknown electromagnetic properties of the scatterer (or radiator) requires
knowledge of both the fields and the sources. Thus, since the first-order
solution cannot reconstruct the sources, it follows that from an inverse
scattering point of view (see sect. VI}, that the first-order solution

Gt € el B A
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possesses the critical pathology of not being an inverse solution at all.
Examination cf the complete solution (73) thus reveals that all the
source distribution information, and, hence, all the formal inverse scattering
information, is contained only in the resolvent operator of (73); i.e., in
all the higher-than-first-order Neumann series solution terms.
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.. SECTION IX

NUMERICAL EVALUATION OF THE RESOLVENT OPERATOR
BY MEANS OF THE FAST FOURIER TRANSFORM

Let N be the number of data points in the three-dimensional space X
for which the ansatz 8(X) has been evaluated by (43). Evaluation of the field
$(x) for these N points in X by conventional numerical integration, as implied
by the resolvent operator in (73), will thus require N2 multiply-add operations

and storage allocations. To recognize that this is an untenable situation

requires merely an examination -of the practical order of magnitude of N.
A minimally reasonable three-dimensional resolution of the field is of the
order of 100 points in each of the three dimensions’; i.e., N=10% and N2=1012,

which is totally unacceptable in practice for even the largest and fastest
state-of-the-art computers.

In cartesian coordinates, the resolvent operator solution (73) cah be
written as the three-dimensional convolution equation

2

2
$(0) = 3 8(X) - lg—;-T)‘Tr*e(x) X (103)

The resolvent kernel "drops off" with distance as %-; its effect is
thus localized to the neighborhood of the field point. The resolvent kernel
can thus be truncated at a few wave leéngths away from the field point without
introducing much of an error, and can certainly be truncated to the complete

x-domain D(X) in which a solution for the field ¢(X) is sought, withcut

introducing much of an error at all., Solution (103) can thus be represented

by the finite three-dimensional convolution

77
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(%)

2 1 SR
(X)) = & 6(X) - %%MT%%'—)[ d3x! . (104) 3

This finite three-dimensional convolution can clearly be evaluated

R T B T IRy

numerically with the aid of the fast Fourier transform [22] élgorithm applied
to a discrete convolution [23], for the execution of which the required
nuwber of multiply-add operations reduces to N Zog, N and the required number
of storage allocations reduces to N. For the previously mentioned practical
case of N=106, N Zog, N & 2x107, and is thus executable on the CDC 7600 in
less than five minutes [24].

For large number of far-field data points y{K.), it similarly becomes
desirable to numerically evaluate the ansatz (43) with the aid of the fast ‘
Fourier transform. This is possible since the ansatz integral (43) is ’

AR
\

essentially a Fourier-surface-integral in the observation transform k-space;

i.e., since

AR S TR i 52

ds -
dg = —& (105)

kZ

where dsk is the differential k-space surface element, it follows from (43)
that

1

8(X) = ———yg
(47) /2 ko

£ _ix.

$e kX k) ds; (106)
Ko

where the closed surface integration in {106) is over a spherical k-space

surface of radius ko. (The full details of the application of the FFT to
(106) will be presented in subsequent report(s) covering the follow-on

contract to the contract covered by this report).
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"SECTION X

FOUR-DIMENSIONAYL FORMULATION OF THE INVERSE THEORY

X.1. INTRODUCTION

The objective of the four-dimensional formulation of the inverse
problem is to develop an exact inverse theory applicable to time dependent
(i.e., moving, rotating, and deforming) radiators and scatterers, utilizing
wide-band short-pulse Doppler data. Some aspects of this objective, such as
wide-band inverse scattering, can readily be obtained by reformulating the
frequency domain inverse solutions into the time domain with the aid of the
time-frequency Fourier transform. However, other aspects of this objective,
such as the utilization of Doppler data, are at best, extremely difficult to
obtain by such means. The source of this difficulty is that all time
dependent solutions must be invariant under a Lorentz transformation, which
is notoriously cumbersome in three-dimensional formulations (particularly
if higher than velocity order effects such as acceleration and jerk are not
to be neglected) and remarkably simple in four-dimensional formulationms.

A four-dimensional relativistically invariant formulation of the inverse
problem is thus a most logical approach.

A four-dimensional scalar theory, consistent with the three-dimensional

scalar theory developed in the previous sections is presented next. Since
the method of derivation of the four-dimensional inverse integral equation
and its solution parallels closely the method of derivation of the previously
presented three-dimensional theory, this derivation is presented in a brief,
but complete, form. However, since again a distribution theoxry approach is
taken, this derivation is commenced with the brief but concise rederivation
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of the well-known four-dimensional formulation of Stratton [25] of the direct
problem, using this distribution theory approach.

E
N
(s {
!
4
i
!
Ve
H
!
[
!

The purpose of this

3 rederivation is not its elegance, but, as was also the rationale for the o
| presentation of appendix I, its lending credence to the distribution theory
}{, approach taken. ‘
£ 3
t, .
: X.2. FOUR-DIMENSIONAL FORMULATION OF THE DIRECT PROBLEM
| S
i .
j Gauss' theorem applied to the four-dimensional vector field
%' !‘ (go¢ - ¢ og) yields
3 fda-(g 0¢ - ¢ 0g) =Idr p*(go$ - ¢09) , (107) .
3: a T
3
’ ’ where a is a closed three-dimensional hyper-surface in a four-dimensional
i, hyper-volume 7, where the four-dimensional scalar field ¢ and free-space
E Green's function g satisfy the inhomogeneous wave equations
. % $=-p (108)
d
g 2g=-3% (109)
i
3 Trespectively, and where
t
g= - ;o r=x-x' , r=|r] . (110)
4n2p2
Thus, by (107} thxough (109),
B
ol
]
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fda-(g 0é - ¢0g) =fdr (0g+0¢ + g 0% - 0d+0g - ¢ 02g)
a T

(111)

o

~

=fdr (g 0%% - ¢ 0%g) (112)

1}
'
(=%
~3
(=]
©
+
Q.
~
-
o
L]

(113)

fd1¢6=¢' , for all X' €1 . (114)
T
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Thus, by (113) and (114),

¢'=fdrgp + fda'(gocb-wg) > (115)

T a

which is the solution of Stratton [26] for the four-dimensional direct
radiation problem.

e et R e e
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X.3. FOUR-DIMENSIONAL FORMULATION OF THE INVERSE PROBLEM

|

s
.
o o
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&
. f

Gauss' theorem applied to the four-dimensional vector field (g¢)
yields

fda-u(gds) =fdr 0+0(g¢) (116)

7] T

e Ar. « poeag b

; =fd'r 02(g$) |, 117

T
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which, by (108) and (109) yields

a

’
fda-(g 06 + ¢0g) = | drt O-(go¢ + ¢.0g)
Y1
P
= T (Og0 + g 0%2¢ +0¢ng + ¢ o2g)
o
T
ﬁ
= ¥ dr (203°0¢ ~gp -4 68) .
Y1

(118)

(119)

(120)

If all the non-vanishing source distribution is in 7 (i.e., p(X)=0
for all x € ), then by (115)

fdrgp=¢' .

T

Furthermore,,

Thus, with

fd-r¢6=¢' , forallx'€ex~r .
T

the aid of (121) and (122), (120) yields

fda%g 0¢ + ¢0g) = zfd'r ogop - 2¢°

a T

T

$! —J‘d'r 0g-0¢ = - {-fda-(g 0¢ + ¢0q) ,
a

(121)

(122)

(123)

(124)

vhich is the four-dimensional and integro-differential equation representation
of the inverse problem.
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X.4. SOLUTION OF THE 'FOUR-DIMENSIONAL INVERSE PROBLEM

Let 6 be the known four-dimensional ansatz to the inverse problem, i.e.,

es-%ida‘(go¢+¢og) . (125)
a

The far-field ansatz is thus represented by a three-dimensional hyper-
surface at infinity, and the resulting four-dimensional domain of integration
over t in (124) is thus over all of four-space. For such a far-field ansatz,
(124) thus becomes

¢! -Jdr og0$ = 6' (126)
which, by virtue of (110), in four-dimensional cartesian coordinates is
$(x") -ﬂ}fog(x'-x)aoqa(x) d¥x = 8(x") (127)
which can be represented by the four-dimensional convolution equation
¢ -og¥oé = ) > (128)

The four-dimensional Fourier transform of (128) thus yields (with the
aid of the appropriate differentiation rule 0 «+ ik) in the four-dimensional

transform k-space

d+k2Go=0 |, (128)
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where .
¢ , O+8 |, (130)
Geg . (131)
Similarly, (109) yields in four-dimensional k-space
6=t . (132)
Combining (129) with (132) thus yields B
=40 , (133)
which, back in x-space, yields
¢=4%6 , (134)
which, with the aid of (125), yields the desired solution
¢ = ~z';fda°(go¢+ ¢0g) , (135)
where the domain of integration is a closed three-dimensional hyper-surface
at infinity. '
L

B i asat ol i S i i




P
s T CTTT e - —oasd
¥ PR T
oty M A L e ¥ e, 0 T L N
T

e

R e T
o ’ 5

e da ion

/

. =
" ploaaidt Kieoaitor il g ol
R T N R s i

.l TR e G I 12

L i SN i kS S S i i Aty

amiizndias

e

il

S o Ty CRanch 3 g g " wrm o & oo
G ot Y i s ol A S b St i ok o 4.

4+

AT e P TS

e o e e o

e O R e

It is most remarkable that the resolvent operator of the four-
dimensional inverse integral equation (126) is pure local-algebraic (i.e.,
of the form (134)), vis-a-vis the resolvent operator of the three-dimensional
inverse integral equation (25), which is a global integral operator (i.e.,
of the form (73)). This simplicity, which occurs in four-dimensional space
only, is intimately connected with another remarkable property uwnique to
four-dimensional space; namely, that the funetional form of the Greem's
function in k-space is invariant to the dimensionality of the space, which is
not the case in x-space; and, that only in four-dimensional space, is the

functional form of the Green's function the same both in x- and k-space [27];
i.e.,

k) = 5 < 1, = g (136)
in four-dimensional space only.

X.5. CONCLUDING REMARKS

The extension of the preceding four-dimensional scalar field inverse
theory to vector and tensor fields, appropriately applicable to electro-

magnetic fields, can be accomplished by means somewhat analogous to those of
sect. V.

The Lorentz-invariant four-dimensional reformulation of Maxwell's
equations for the total charge and current densities in terms of the
fundamental electromagnetic fields (see appendix II, eqn. (32) - (35)),
which is needed for the previously mentioned extension of the inverse theory,
can be accomplished by most conventional means.

A four-dimensional Lorentz-invariant generalized boundary condition -
constitutive equation (see appendix II, eqn. (38) and (49}), which is
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essential to the final objectives of a four-dimensional inverse theory (see
sect, VI) is similarly obtainable.

The various permutations and combinations of the special case
solutions (and their details) for wide-band short-pulse data, monostatic-
bistatic data, Doppler data, and incomplete ansatz data, etc., can be
extracted from the general solution by an appropriate choice of the four-
dimensional geometry, the coordinate system, and the domain of hyper-surface
integration implied by the ansatz (125) and the general solution (135); i.e.,
by an appropriate choice of the '"world-line" of the observer relative to the
radiator or scatterer, or vice-versa.

The work outlined in the preceding four paragraphs is currently being
undertaken under an appropriate part of a follow-on contract to the comtract
covered by this report, and will be covered in detail in subsequent report(s)
to this follow-on contract.

Since, as was the case with the three-dimensional invexse solution (see
sect. IX), the four-dimensional inverse solution (135) can be formulated as a
convolution; it can thus similarly be evaluated numerically with the aid of
the fast Fourier transform applied to its equivalent discrete convolution
representation. However, since such a convolution is four-dimensional, the
size of practical data (e.g., (64)* = 1,7x107) will utilize to the limit the
size and speed of the biggest and fastest existing computer [28]. Next
generation computers, such as Star or Illiac, will not be taxed to the limit
of their size and speed by four-dimensional problems of practical magnitude.
An alternative practical means of evaluating (135) is by a hard-wired Fast
Fourier Analyzer (i.e., by special purpose computer, vis-a-vis the software
compiled FFT on a general purpose computer). A further alternative might be
a Fourier analog optical processor.

In previous attempts at a formal definition of the inverse problem
(see sect. VI), the seemingly logical classification of the direct vs, the
inverse problem in terms of the unknown being the effect vs. the cause
respectively, has purposely been avoided for reasons that will be discussed
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next. The topological distinction between the three-dimensional direct and
inverse problem has previously been shown to be that of whether the unknown
fields and sources are on different or the same side of the closed surface
ansatz integrals gEds’(g Vé ¥ ¢ Vg) respectively. This topological
distinction clearly carries over intc four-dimensions for the closed hyper-
surface ansatz integral ﬁ da*(gm¢ ¥ ¢0g). However, because of the temporal
nature of the added fourth dimensiorn and the (lorentz transformation invariant)
causality principle, it is now clear that no Lorentz-invariant distinction

between the direct and inverse problems can be made on the basis of cause
and effect,

87

. . - - . L o ey o sy 485 ook 420 . - Sl Qe 4
" T - 2 - v aaps s RRd R i - e e So e S e i e




APPENDIX I

SIMPLIFIED AND UNIFIED REDERIVATION OF THE
INTEGRATION OF THE FIELD EQUATIONS FOR THE DIRECT PROBLEM

Gauss' theorem, when applied to the vector field (¢ Vg -~ g V¢), yields
fds-(r:» Vg-gv¢)=fdv Ve(¢ Vg - g V$) , )
s v
provided (¢ Vg - g V¢) is continuous and twice-differentiable in v and on s.
These continuity conditiens can be totally dispensed with if ¢ and g and,

hence, (¢ Vg - g V$), are taken as distributions [29]; specifically, if ¢ is
taken as a field satisfying the inhomogeneous Helmholtz equation

v26(x) + k2 ¢(X) = - p(X) vy

and g is taken as the associated Green's function
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72g(x) + k2 g(x) = - 8(x) , (6)

e v
P iy 1y

and where both ¢ and g satisfy the radiation condition at infinity.
The right-hand side volume integral in (1) reduces to

fdv Vel Vg - a V¢) =fdv (VéeVg + ¢ V2g - Vg+V¢ - g V%$) (7
Y v

=fdv (¢ v2g - g V%) , (8)
v

which thus yields for (1)

fds-(cp Vg - g %) = (dv (¢ V2g - g V2¢) , (9
S JV

which is known as Green's second identity in Green's theorem.

With the aid of (2) and (6), (9) reduces to

r
:fds-fé Vg ~ g Vé) = J dv [$(~k2g-8) - g(~kZ¢~p)] (10)
o
s v

.
=.J dv (~k2g$ - 8¢ + k2gd + gp) 11)
v

=fdv (-89 + gp) 23

v

Ly
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fds»(:b Vg—gv¢)=~fdv6¢ + fdvgp (13)

S A \Y

If the field point X' is taken as inside the volume v bound by the
surface s, then the first volume integram on the right-hand side of (13)
yields by the very definition of the delta-function

fdv S(X-X') ¢{X) = ¢(x') 3 X' Ev. (14)

v

Similarly, if the field point X' is taken as cutside this volume v,

then

fdv S(x-x') ¢(X) =0 ; X Ev, (15)

v

And similarly again, if the field point X' is on the surface s

bounding the volume v, then

1
fdv S(x-X") $(%) = %—’;—l ¢xYy 3 X' E€s , (16)

\Y

where 2(X'} is the internal solid angle subtended by s on X', Furthermore,
if the curvature of s at X' is finite and noa-singular, then Q(X') = 27; then

{dv 8(x~%X") (¥} = £ 4(x") . 17)

J

¥

If the intornal solid angle §iUX') subtended by s on X' is consistently

generallzed for the field point X' not on s &3
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4v , X' E€vy
QX" = (18)
0, x'é€v ;

which is geometrically most reasonable, (14) through (16) are representable
by

1
fdv sexxt) o) = BEL gix1y gor an1 x1, (19)
v

With the aid of this (19), (13) yields

T A S SR

%¢'=fdvgp + ffds'(g vé - ¢ Vg) , (20)

A g

which is a unified representation of the Kirchhoff integration of the field
equations, valid for all field points (i.e., field points inside, on, and
outside s).

A physical interpretation, as well as a rigorous proof of the physical
rmeaning of both the volume and the surface integrals in (20) are of interest
next. To this end, consider a closed surface s; totally inside another
closed surface s, (see fig. 12), a source distribution p1{X) totally localized
in the volume v; bound by the closed surface s1 (d.e., p3(X) = 0 for all X
outside s3), and another scurce distribution p2 (distinct from p;) totally
localized in the intervening volume v, band by the closed surfaces 51 and sy
(i.e., p2(X) = 0 for all X inside sy and oatside S2). Furthermore, let the
field point X' be outside the closed surface s; and inside the closed surface
sz; i.e., in the volume v,. It thus follows that if the closed surface s
in (20) is taken as the closed surface sy and sy, then by (18), (20) yields

¢‘=fdvgpz +fds~(g V¢“¢Vg)+fd5‘(g Vo - ¢ Vg) . (21) )

4
V2 Si S2
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FIGURE 12
FIELD AND SOURCE POINT GEOMETRY

If, however, the closed surface s in (20) is taken as the closed
surface s, only, then by (18), (20) vields

¢! =fdvgol + fdvgpz + fds-(g 9 - ¢ Vg . (22)

Vi \#] S2

Examination of (21) and (22) reveals that the sole distinction
between these two rcpresentations of the field at the field point X' is the
interchangeability of the closed surface integral over the closed surface s,
with the volume integral over the volume v;. It thus follows that thé
field ¢; at the field point X', due sclely to the source distribution p,
can be represented by either the volume integral
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¢y = fdv g e, (23)
V1
or the closed surface integral
¢{ =§ds-(g V¢, ~ ¢, vg) . (24
51

That these volume and surface integrals (23) and (24) are indeed
equivalent can alsc be shown by taking the closed surface s in (20) as the
closed surface sy only; then, by (18), (20) yields

0=fd"991 - fds'(g Vo1 - 4y V@)

Vi 51

@E.D.; (25)

(where the (-) sign in front of the surface integral in (25) is duz to the
fact that by Gauss! theorem the surface unit vector s must always be chosen
as outwards from the domain of voiume integration; see fig. 12).

The physical meanings and interxpretations of (23) and (24) respectively
are clearly that of the sum (volume integral) of the action~at-a-distance-
fi2ld due to a spatial (volume) source distribution and its closed surface
integral equivalent, provided the field point X' and the source distribution
py are outside and inside of the closed surface s; respectively.

Next, considex the field point X" chosen as inside the closed surface
sy (see fig. 12); thus, if the closed surface s in (20) is taken as the

closed surface sy, then by (18), (26) yields for the field ¢ at this field
point X"

o" _—.fd\, gpy - f@s.{g 9 - ¢ YG) (26)

Vi 81
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(where the (-) sign in front of the surface integral in (26) is again for
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the same reasons as stated subsequent to (25)).

If, however, the closed surface s in (20) is taken as the clnsed

‘f %{

?E _~§ surface s, and sy, then by (18), (20) yields (for the field point still

5; '_é\ chosen as X'}

@ '_E?

| 0=fdvgpz + fds%g v - ¢ V) . @27
i ‘

E V2 $1

i
»:-:}E ‘ 4\“& o

nst ot paiios NGO

s,
AR

It thus follows from the previously developed physical meaning and

a
-

interpretation of the volume integral over 2 sournz distribution, and
comparison of (26) and (27), that the physical meaning and interpretation of

the closed surface integral in (26) is that of the (negative of the)

equivalent of the action-at-a~disiance-field due to a spatial source 1

DAL PE P

| ) g: distribution, provided the field point X" and the source distribution pj are
‘ inside and outside of the closed surface s; respectively (the (-) sign again
having arisen for the previously stated reasons).

3 i . Since in the previous arguments the closed surface, the field point,

-l

and the nonvarnishing source distribution, were chosen topolegically com-
pletely arbitrarily, with the sole exception that the fieid point and the non-
vanishing source -distribution are to be on opposite sides of the closed

surface, it follows that if the surface unit vector is consistently chosen

LR AR ¥

as pouinting from the field point to the source distribution, thea the
physical meaning and interpretation of the surface integral gﬁds-(g Ve - 4 Vg)
£ is always that of the fields produced at a field point on ONE SIDE of the

fﬁ' : ? ’ surface by the total sourve distribution located on the OTHER SIDE of the

E surface, and totally -equivalent to the volume integral‘f'g p dv over this

s,

T sone source distribution,
This property of relating fields and sources on aopposite sides of the

§F 1 Kirchhoff surface integral is its fundamental topologpical property, vwhen
3 < applied to direet field problems; it is, however, totally useless when
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applied to inverse field problems; since the latter problem is topologically
éharacterized by unknown fields and sources on the same side of a closed
surface. The surface integral of interest to the imverse field problem is
thus a surface integral relating fields and sources on the same $ide of the
surface; relating them at least in such a fashion as to render the surface
integral a useful ansatz to the inverse problem. As shown in sect, 1I, such
a surface integral is ﬁds-(g Vo + ¢ Vg).

Replacing the scalar field Gauss' theorem (1) with its vector
equivalent

fdsxng}-‘ - g ¥xF) =fdv vx(VgxF - g vxF) (28)

S Vv "]

and applying it analogously twice to the electromagnetic vector field and
wave equations (see appendii II), vis-a-vis the scalar Helmholtz field
equation (2), where the vector field F vepresents the electric and magnetic
vector fields zespectively, similarly yields the familiar Stratton and Chu
[30] or Franz [31] integral representation of Maﬁ(well's equations.

As in the case of the scalar field, the surface integral in (28)
relates fields and current density distributions {the source distributions)
of opposite sides of this surface; whereas the surface integral f dsxvx(gF)
relates ficlds and current densities which are on the same side of the
surface,
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APPENDIX 11

A REFORMULATION OF THE ELECTROMAGNETIC FIELD EQUATIONS.

I1I,1. THE CONVENTIONAL FREE CHARGE AND CURRENT DENSITIES REPRESENTATION

The conventional representation of Maxwell's equations is

v-D = Pp (1)

VaB = O (2)
__ 38

VxE = - T {3)
- 3D

uxH = Jf i 4)

where pf and Jf are the free charge and current densities vespectively (also
referred to by some authors as the true or unbound charge and current densities);
E and B are the electric and induction fields respectively, which are funda-
mental force fields; and D and H are the displacement and magnetic fields
respectively, which are artificially derived fields. These artificially

derived fields are reiated to the fundamental fields by

D=eo E+ P (5)
=1 -
H= 5 B-N , (&)

where Pb and M are the polarization (of the bound charges) and magnetization
fields respectively. These polarization and magnetization fields are the
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contributions to the fundamental fields produced by local charge and current
densities in a material medium. eo, and uo are the permittivity and perme-

ability of free space respectively, collectively referred to as the inductive

capacities of free space.

In linear isotropic media, these polarization and magnetization fields
are relatable to the electric and magnetic fields respectively by the
constitutive equations

=X, €s E (7)
M=x H ) / (8)

where Xg and Xy are the electric and magnetic susceptibilities of the linear
isotropic medium respectively, collectively referred to as the susceptibilities
of the medium.

For such linear isotropic media, with the aid of (5) through (8), the
relationship between the derived and fimdamental fields yields the

conventional constitutive equations

D=¢k €))]
B = u H s (10)
where
€= K, € an
Ko =1+ X, (12)
and
M=K Yo 13)
xm =1+ xm > (14) i
I |
98- }
i




where ¢ and y are the permittivity and permeability of the medium respec-

tively, collectively referred to as the inductive capacities of the medium; 1:
and Ky and K, aTe the relative permittivity (or dielectric constant) and i
relative permeability of the medium respectively, collectively referred to
as the specific inductible capacities of the medium,

For linear isotropic conducting media, Ohm's law yields the

additional constitutive equation

J E (15)

£

where af is the conductivity (of free charges of the medium.

For linear isotropic media which are also spatially and temporally
homogeneous (i.e., media for which the inductive capacities are constants
neither a function of space nor a function of time), the conventional
formulation of the wave equations follows from (3), (4), (9), and (10); i.e.,

32E aJ
UxUxE + pe oL -y -.;Ef (16)

Vxd

vxIxH + uE 32“ (17)

32 f .

For the general case of inhomogeneous media (i.e., media for which
; either or both of the inductive capacities are not a constant; namely, are a
p function of time and/or space), the formulation of such a wave equation is in
: general not possible.

'l?t The preceding equations can be classified into one of three classes:

MAXWELL'S EQUATIONS: The first order differential equations (1)
through (4) relating the electric and magnetic fields to the charge and
current densities, In these equations the electric and magnetic fields are
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intertwined and not separated. These equations are the fundamental equations
derivable from the fundamental action-at-a-distance laws of Coulomb, Faraday,
and Biot-Savart.

THE WAVE EQUATIONS: The second order differential equations (16),
(17) relating the electric or magnetic fields separately to the current
densities.. The essential and distinguishing (from Maiwell's equations)
property of these equations is that the -lectric and magnetic fields are
separated, i.e., that each wave equation contains one field (electric or
magnetic) only. The term wave equation is thus possibly a misleading
misnomer; a more characteristically descriptive name might thus be the
separated equations. It should again be noted that for the general case
of inhomogeneous media, the separation of the electric and magnetic fields
into a set of wave equations of the form (16) and (17) cannot be achieved.

Maxwell's equations and the wave equations, namely, all those
equations derivable from the fundamental action at a distance laws, are
collectively referred to as the field equations.

THE CONSTITUTIVE EQUATIONS: The local algebraic equations (7), (8),
(9), (10), and (15) which relate the fundamental fields to the artificially
derived fields, or the current densities to the fields. These equations are
a description of the local properties of the material medium, such as Ohm's
law, and are essentially non-electromagnetic in nature (namely, they do not
contain the basic electromagnetic action-at-a-distance laws); in most cases,
these equations involve Newton's second law of motion and the microscopic
dynamics of the material medium.

It takes a (set of) field equations and a (set of) constitutive
equations to completely specify any electromagnetic problem. (The consti-
tutive equations often take the form of a boundary condition to the
differential field equations; the boundary conditions determining the

specific unique solution to the differential equations).
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11.2. THE DIFFICULTIES WITH THE CONVENTIONAL FORMULATION f

The difficulty with the conventional formulation of the field

equations is essentially the severely restricted applicability of the

47 L i Y -

resulting wave equation to the interior, and not the surface, of homogeneous

media only,

3 It thus immediately follows that the conventional formulation of the
{? ‘ integral representation of the field equations is also valid for the interior,
| and not the surface, of homogeneous media only; i.e., the complete domain ‘
of volume and surface integration must be in the interior of the homogeneous

medium.

The seriousness of this limitation can best be illustrated by the

¥ case of a finite sized homegeneous medium of constant inductive capacities
different from those of empty space, imbedded in infinite free space. For
such a case, one clearly obtains two different wave equations (of the form
of (16) and (17), one wvalid inside the medium and one valid outside of the

medium, neither of which is valid on the surface between the medium and the
free space. Furthermore, there exists no single wave equation valid for all
space. The conventional formulation of the integral representation of the
field equations is thus valid only if the complete domain of volume and

surface integration is completely in the interior of such a medium; this
: integral representation is thus not valid for such problems as the external

scattering by such media.

£ For the general case of arbitrarily inhomogeneous media, a wave
equation, though much more complicated than the form (16) and (17) is

TN
W YN T

'§~ formable; however, no appropriate Green's function is known for such a wave
fﬁ equation, Without such a Green's function, the integration of the field

xj" k- equations into an integrai representation is thus not possible,
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1I.3. THE TOTAL CHARGE AND CURRENT DENSITIES REPRESENTATION

The source of the difficulties with the conventional formulation of
the field equations lies in their provincial view of matter, charge, and
current, and, hence, the fields. Maxwell's equations contain only the free
charge and current densities, hence, the artificially derived fields in
addition to the fundamental fields. The presence of the artificially derived
fields in Maxwell's equations furthermore injects into the field equations
some of the properties of the medium, which rightfully should be in a
separate set of constitutive equations. The distinction between free and
bound charge and current densities is artificial and a source of considerable
difficulty when dealing with nom-elassieal, non-linear media such as plasmas
and semiconductors. Furthermore, all accelerating charges, whether free or
bound, radiate electromagnetic fields. It thus stands to reasun that a more
fundamental formulation of Maxwell's equations would contain only the fotal
charge and current densities and only the fundamental fields, and thus be free
of the artificially derived fields and the artificial distinction between free
and bound charge and current densities. The properties of the msdium implicit
in the artificially derived fields should then only appear in a separate set
of constitutive equations. Such reascning is further enhanced by the point
of view of an observer of electromagnetic radiation, to whom in principle no
distinction exists between electromagnetic radiation emanating from accelera-
ting free or bound charges, and who measures such radiated fundamental fields
at an observation point with the aid of the properties of the medium in which
the observation point is imbedded.

The sought reformulation of Maxwell's equations is thus a formulation
invariant to the specific properties of the medium and the mechanistic nature
of the free and bound charges in the medium; namely, a formulation stating
the wniversal laws of the electromagnetic theory only. All the specific
properties of the medium would thus be relegated solely to a set of
constitutive equatiomns.
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Such an invariant formulation of Maxwell's equations can be derived
directly from the basic action-at-a-distance laws of Coulomb, Faraday, and
Biot-Savart, and an argument analogous to Maxwell's argument that yielded

the displacement current, utilizing an equation of continuity for the conser-

vation of the total charges only. However, for the sake of showing consistency

with the conventional formulation of Maxwell's equations, such ar invariant

formulation will be developed next directly from the conventional formulation
and the definitions of the artificially derived fields.

Eliminating the artificially derived fields from (1) through (4) with
the aid of (5) and (6) yields

veE=1 (pp = VoPy) (18)
veB=0 (19)
VxE = - %%- (20)
VxB = ue (Jf. + %Eb + VxM) + uoeo -g-%— . (21)

From the very definitions of the polarization and magnetization fields
associated with the material media, it follows that

V'P = e

P, _
SEb = Jp (23)
VxM = Jm s (24)

where Py, is the bound polarization charge density; namely, the net bound charge
density produced by the polarization field in a material medium; and Jp and

Jm are the bound polarization and magnetization current densities respectively;
namely, the net bound current densities produced by the polarization and
magnetization fields respectively in a material medium.
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.
{
3
| Since the total charge and current densities p and J respectively is :
, the sum of all the free and bound charge and current densities respectively,
C A irrespective of the mechanistic nature of these bound charge and current
§ densities, it follows that
5 p = pf - V-Pb (25)
i 3=9.+ % 4 o (26)
k. f ot )

The invariant formulation of Maxwell's equations in terms of the total
charge and current densities thus becomes

3
3
%
K
A
i
3
4
gl
3
43|

=1
V+E = c, P (z7)
veB=0 (28)
B
vk = - =5 (29)
VXB = Mo J + Ho€o %E_ . (30)

It now becomes convenient to redefine the magnetic field H as a funda-
nental field, related to the fundamental induction field B for all media as

H

1
- B . (31)

Maxwell's equations (27) through (30), in texrms of this redefined
fundamental magnetic field thus become

;.‘.-é.
. 1B
.1
%
|

=1
VeE = c, P (32)
veH=0 (33)
v¢=-uyg (34) |
WH =0+ e (35)
, 104 i
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The invariant formulation of the wave equations, no longer restricted
to linear, isotropic, and homogeneous media, but wniversally valid for all
media, now becomes

2
VxVxE + peeo %‘.EE = = VYo "g% (36)
VxUxH + poco %%2' = yxJ 37

The three constitutive equations (7), (8), and (15), with the aid of
(23) and (24), thus immediately yield the single constitutive equation for
the total current density

_ 3
J—O'fE"'Eo S-t—(xe E)+V><(xm W . (38)
The boundary condition for the surface of perfect conductors, i.e.,
K=nH , (39)

where K is the surface current density and nh is the outward surface unit
vector, presents a special problem that can be resolved by introducing the
magnetic vector surface conductivity distribution density (%\5,') such that,
since J dv = K ds, the boundary condition (39) becomes the constitutive

(distribution) equation

_ds
I=Exh . (40)

With the aid of (38), it is thus possible to introduce the generalized
econstitutive equation

I

J=cfE+eo£<x8D+mexH+(me+g—s;)xH . (41)
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The equation of continuity for the conservation of the total charges

thus is

ved + %%-= o . (42)

The time-reduced form of Maxwell's equations (32) through (35) for

monochromatic fields in terms of the total clharge and current density thus is

and (37) for moncchromatic fields in terms of the total current demsity thus is

vE=1, ” (43)
vH=0 (44)
UxE = - iupe H (45)
UxH = J + iweo E . (46)

With the aid of (44), the time-reduced form of the wave equations (36)

UxVxE - k2 E = - fwpe V 47

VH+ kK2 H=~-d . (48)

The time-reduced form of the generalized constitutive equation (41)

for monochromatic fields for the total current density thus is

ds
J= (cf+ iwee X JE + (VX + x V+ '&7”‘" 3 (49)
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And the time-reduced form of the equation of continuity for the
conservation of total charges thus is

Ved = ~ iwp . 50)

A universally walid scalar, vector, and Hertz potential theory for
the fundamental £ields ondy, in terms of the total charge and current
densities, can similaxly mnd consistently be developed.
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